

Día 2

Curso Básico Enstrumentación de acuarios con Arduino

PROYECTO PAPIME PE207521

Proyecto del Curso Básico de Instrumentación con Arduino

RESISTENCIA PULL-UP	DISTANCIA DEL CABLE (METROS)
4,7 kΩ	De 0 m a 5 m
3,3 kΩ	De 5 m a 10 m
2,2 kΩ	De 10 m a 20 m
1,2 kΩ	De 20 m a 50 m

Hacer Ejemplo: Temperatura_D18B20

Ejemplo: 2 Temperatura

#include <OneWire.h> #include <DallasTemperature.h> const int pinDatosDQ = 9; int numeroSensoresConectados =0; OneWire oneWireObjeto(pinDatosDQ); DallasTemperature sensorDS18B20(&oneWireObjeto); void setup() { Serial.begin(9600); sensorDS18B20.begin(); Serial.println("Buscando dispositivos..."); Serial.println("Encontrados: "); numeroSensoresConectados =sensorDS18B20.getDeviceCoun Serial.print(numeroSensoresConectados);

Serial.println(" sensores");

Ejemplo: 4_Temperatura_LCD

```
#include <LiquidCrystal.h>
#include <OneWire.h>
#include <DallasTemperature.h>
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
const int pinDatosDQ = 9;
OneWire oneWireObjeto(pinDatosDQ);
DallasTemperature sensorDS18B20(&oneWireObjeto);
```

```
int k=0;
int numeroSensoresConectados =0;
```

. . .

```
void setup() {
    lcd.begin(8, 1);
    Serial.begin(9600);
    sensorDS18B20.begin();
    Serial.println("Buscando dispositivos...");
```

Guardar el dato en una memoria SD, con un reloj RTC, <u>visualizarlo</u> <u>en una pantalla LCD</u> y en una Terminal Serial.

Hacer Ejemplo: LCD_TEMP_2022

Ejemplo: 4_Temperatura_LCD

```
const int pinDatosDQ = 6, ALARM = 7;
```

void setup() {
 pinMode(ALARM, OUTPUT);
 digitalWrite(ALARM, HIGH);

•••

void loop() {
 if(TEMP>=26){ //26 es la temperatura que se alarma el intrumento
 digitalWrite(ALARM, HIGH); // enciende el LED

```
}else{ digitalWrite(ALARM, LOW); }
```

• • •

Guardar el dato en una memoria SD, con un reloj RTC, <u>visualizarlo</u> <u>en una pantalla LCD</u> y en una Terminal Serial.

Hacer Ejemplo: LCD_TEMP_ALAM_2022

Guardar datos en MicroSD

Especificaciones:

Memorias compatibles: Micro SD, Micro SDHC (memoria de alta velocidad).

Voltaje de entrada: $4.5 \sim 5.5$ V.

La interfaz de comunicación es una interfaz SPI estándar.

Tiene 4 orificios de posicionamiento de tornillos M2 para una fácil instalación.

Interfaz de control: Un total de seis pines.

-GND a tierra.

-VCC es la fuente de alimentación.

-MISO, MOSI, SCK Para el bus SPI.

-CS es el pin de señal de selección del chip.

Guardar el dato en una memoria SD, con un reloj RTC, visualizarlo en una pantalla LCD y en una Terminal Serial.

2

Guardar datos en MicroSD

Esta tarjeta le brinda la capacidad a su Arduino UNO, leonardo, o MEGA almacenar datos en una tarjeta SD con una mínima configuración, el Shield incorpora un reloj en tiempo real (RTC) junto con la batería que le permite el registro de la fecha durante unos cuantos años. El Shield incorpora un lector SD que permite la lectura en formato FAT16 o FAT32 de memorias hasta de 32GB. La board tambien contiene un espacio para soldar sus componentes y contener su circuito en la misma tarjeta. El Shield tiene un conjuntode headers para Arduino que permiten apilar más Shields encima.

Guardar el dato en una memoria SD, con un reloj RTC, <u>visualizarlo</u> <u>en una pantalla LCD</u> y en una Terminal Serial.

Guardar datos en MicroSD

Pin del módulo	Pin Arduino UNO	
VCC	5 V	
CS	Tu lo eliges (normalmente se utiliza el 10)	
MOSI	11	
SCK	13	
MISO	12	
GND	GND	

Guardar el dato en una memoria SD, con un reloj RTC, <u>visualizarlo</u> <u>en una pantalla LCD</u> y en una Terminal Serial.

Ejemplo: 5_SD

```
#include <SPI.h>
#include <SD.h>
File myFile;
void setup() {
Serial.begin(9600);
while (!Serial) {
 Serial.print("Initializing SD card...");
 if (!SD.begin(4)) {
  Serial.println("initialization failed!");
 3
  Serial.println("initialization done.");
  myFile = SD.open("test.txt", FILE_WRITE);
 if (myFile) {
  Serial.print("Writing to test.txt...");
  myFile.println("testing 1, 2, 3.");
  myFile.close();
  Serial.println("done.");
 } else {
     Serial.println("error opening test.txt");
void loop() { }
```

Guardar el dato en una memoria SD, con un reloj RTC, visualizarlo en una pantalla LCD y en una Terminal Serial.

Reloj de tiempo real (RTC)

Características:

- Integrado de reloj DS1302Z
- Cristal de 32.768KHZ,para proporcionar la señal de reloj de precisión.
- Base para batería CR1220
- Pines comunes con un paso de 2,54mm entre pin
- TamañodelPCB:29(mm)x17(mm)

Guardar el dato en una memoria SD, <u>con un</u> <u>reloj RTC</u>, visualizarlo en una pantalla LCD y en una Terminal Serial.

<image/>	TC)	Guardar el dato en una memoria SD, <u>con un</u> <u>reloj RTC</u> , visualizarlo en una pantalla LCD y en una Terminal Serial.
	RELOJ	ARDUINO
	Vcc1	NC
	Vcc2	5v
	GND	GND
	CLK, SCLK	6
	DAT, I/0	7
	RST, CE	8

Ejemplo: 6_RTC

```
#include "RTClib.h"
RTC DS1307 rtc;
char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
void setup () {
 Serial.begin(9600);
 #ifndef ESP8266
 while (!Serial); // wait for serial port to connect. Needed for native USB
 #endif
 if (! rtc.begin()) {
  Serial.println("Couldn't find RTC");
  Serial.flush();
  while (1) delay(10);
 if (! rtc.isrunning()) {
  Serial.println("RTC is NOT running, let's set the time!");
  //rtc.adjust(DateTime(F( DATE ), F( TIME )));
  rtc.adjust(DateTime(2022, 1, 21, 3, 0, 0));
void loop () {...
```

Guardar el dato en una memoria SD, <u>con un</u> <u>reloj RTC</u>, visualizarlo en una pantalla LCD y en una Terminal Serial.

Ejemplo:Reloj_ds1307_2022

Libreria RTClib-master.zip

Ejemplo: 6_RTC

void loop () { DateTime now = rtc.now(); Serial.print(now.year(), DEC); Serial.print('-'); Serial.print(now.month(), DEC); Serial.print('-'); Serial.print(now.day(), DEC); Serial.print(" ("); Serial.print(daysOfTheWeek[now.dayOfTheWeek()]); Serial.print(") "); Serial.print(now.hour(), DEC); Serial.print(':'); Serial.print(now.minute(), DEC); Serial.print(':'); Serial.print(now.second(), DEC); Serial.println(); delay(3000);

Guardar el dato en una memoria SD, <u>con un</u> <u>reloj RTC</u>, visualizarlo en una pantalla LCD y en una Terminal Serial.

Ejemplo:Reloj_ds1307_2022

Proyecto del Curso: Lector de temperatura

Guardar el dato en una memoria SD, con un reloj RTC, Visualizado en una Terminal Serial.

Ejemplo: 7_RTC_SD

```
void loop() {
DateTime now = rtc.now();
myFile = SD.open("CURSO.txt", FILE WRITE);
if (myFile) {
  Serial.print(now.year(), DEC);
  myFile.println(now.year(), DEC);
  Serial.print('-');
  myFile.println('-');
  Serial.print(now.month(), DEC);
  myFile.println(now.month(), DEC);
  Serial.print('-');
  myFile.print('-');
  Serial.print(now.day(), DEC);
  myFile.print(now.day(), DEC);
  Serial.print(',');
  myFile.print(',');
  Serial.print(now.hour(), DEC);
  myFile.println(now.hour(), DEC);
```

. . .

Guardar el dato en una memoria SD, con un reloj RTC, Visualizado en una Terminal Serial.

Ejemplo:SD-Write_Reloj_2022

Proyecto del Curso Básico de Instrumentación con Arduino

Ejemplo: Proyecto

#include <LiquidCrystal.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <SPI.h>
#include <SD.h>
#include <Wire.h>
#include "RTClib.h"

••• ••• ••• Guardar el dato en una memoria SD, con un reloj RTC, Visualizado en una Terminal Serial.

Ejemplo:

SD_Write_RELOJ_TEMP_LCD_2022

Proyecto del Curso: Sensor de Luz

Guardar el dato en una memoria SD, con un reloj RTC, Visualizado en una Terminal Serial.

Ejemplo: 9_Sensor de Luz

```
#include <Wire.h>
#include <BH1750.h>
BH1750 Luxometro;
void setup(){
 Serial.begin(9600);
 Serial.println("Inicializando sensor...");
 Luxometro.begin(BH1750 CONTINUOUS HIGH RES MODE); //inicializamos el
sensor
}
void loop() {
 uint16 t lux = Luxometro.readLightLevel();//Realizamos una lectura del sensor
 Serial.print("Luz(iluminancia): ");
 Serial.print(lux);
 Serial.println(" lx");
 delay(500);
```

Guardar el dato en una memoria SD, con un reloj RTC, Visualizado en una Terminal Serial. Gestor de Liberias Tema Todos Tino Todos BH1750 rs Versión 1.2.0 INSTALLED Arduino library for the digital light sensor breakout boards co o, ESP8266 & ESP32 compatible library, Ard More info Seleccione versión 🗸 Instali Actualizar BH1750_W by Wolfgang Ewald An Arduino library for the BH1750 light intensity se register. More info BH1750FV Enables reading the digital light sensor Enables reading the digital light sensor BH1750F More info Cerrar

Tarea:

Agregar el sensor de luz al proyecto

Descargar e instalar software VMwAre

https://drive.google.com/file/d/1igqB0diYJN
iom8NnafzK81PdXIuWBVu0/view?usp=share_li
nk

Máquina Virtual

Laptop con puerto Ethernet Memoria RAM libre 3 GB Disco Duro 20 GB de espacio. Sistema operativo Windows o linux.

PROYECTO PAPIME PE207521

Gracias!!!